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Orbitofrontal-sensory cortical interactions in 
learning and adaptive decision-making 
Highlights 
Reciprocal connections between sen-
sory cortices and the orbitofrontal cortex 
(OFC) support value computations and 
the construction of task states during 
reinforcement-guided learning. 

We assess primary sensory cortical pro-
jections of task-relevant information to 
the OFC, including perceptual uncer-
tainty, salience and sensory working 
memory, departing from classical theo-
ries of sensory processing. 

OFC feedback projections to sensory 
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The orbitofrontal cortex (OFC) is a hub for value-guided decision-making, linked 
reciprocally with both cortical and subcortical regions. While projections from 
sensory areas to the OFC – and vice versa – are known to support goal-
directed learning, these projections have often been studied in isolation, and 
their joint effect remains poorly understood. Here, we revisit these circuits 
through a unifying computational framework. We propose that sensory cortices 
send compressed task knowledge to the OFC to build abstract task models, 
while OFC feedback provides teaching signals that reshape sensory representa-
tions within the cortical hierarchy. This bidirectional exchange equips sensory 
areas with cognitive functions that extend well beyond passive feature detection, 
with significant implications for our understanding of learning, cognitive models, 
and artificial neural networks. 
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areas instruct and enhance sensory rep-
resentations of task-relevant stimuli. 

We propose a synergistic model of 
closed-loop OFC–sensory cortical inter-
actions that supports efficient learning in 
the human brain.
The orbitofrontal and sensory cortical circuit in learning 
When trying a new café during a morning commute, a rich, flavourful coffee will encourage you 
to return the next day, whereas a bland one will ensure that you will not. This everyday example 
illustrates the essence of reinforcement-guided learning (RL) (see Glossary), an effective frame-
work for modelling learning processes [1,2]. Among the brain’s critical contributors to RL is the 
orbitofrontal cortex (OFC) [3–5], long recognised for its role in value computations and task-
state representation [6–8]. Damage to the OFC impairs critical components of RL, including 
credit assignment and response–outcome mappings [9,10]. These computations depend on the 
OFC’s coordinated interaction with several cortical and subcortical brain areas, notably the hippo-
campus and striatum [11,12]. However, only recently have we begun to unearth the importance of 
sensory areas’ interactions with OFC. 

Sensory cortices filter, represent, and relay sensory information, operating within a hierarchically 
organised system often known as the sensory hierarchy. These cortices maintain reciprocal 
connections with the OFC, supporting the bidirectional exchange of information [13]. Notably, 
the OFC is among the few frontal regions receiving direct anatomical input from all five sensory 
modalities [14], enabling multisensory information integration, thought to be necessary to form 
generalisable value representations [13]. Intriguingly, recent studies have challenged the tradi-
tional view of sensory cortices as mere feature detectors, revealing they may accommodate spe-
cific cognitive functions such as attention [15], working memory [16], tracking perceptual 
uncertainty [17], and active feature selection [18]. Human neuroimaging studies have even re-
ported value-related coding in sensory areas that may depend on OFC input during RL tasks 
[19,20]. 

Despite these findings, research has progressed mainly along parallel tracks – either examining 
how sensory processing supports OFC function or how OFC modulates sensory functioning –
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Glossary 
Bottom-up attentional capture: 
allocation of attention to a stimulus that 
is sufficiently salient, driven by the 
sensory properties of the stimulus that 
might differ from top-down attended 
features. 
Cognitive map: the systematic 
organisation of physical or abstract 
entities and the relationship between 
them in artificial or biological neural 
systems. 
OFC–sensory cortical interactions: 
the anatomical and functional direct and 
indirect connections between the 
orbitofrontal cortex and sensory cortices 
from all five sensory modalities. 
Perceptual uncertainty: the degree of 
ambiguity in the agent's perception of 
stimuli in its environment, which can 
arise from various sources, including 
sensory noise, ambiguity in the 
environment, and uncertainty in the 
agent's internal models. 
Reinforcement-guided learning 
(RL): a trial-and-error learning process 
shaped by rewarding and aversive 
outcomes. 
Representation learning: learning a 
representation of the environment based 
on sampled stimuli that makes it easier 
to extract useful information according 
to the agent’s  goal  .
Sensory hierarchy: classical 
hierarchical organisation of sensory 
processing in the brain, where primary 
sensory areas receive thalamic 
projections of sensory information and 
encode sensory feature information 
before relaying this information to higher-
order sensory areas involved in higher 
functions such as object recognition. 
Sensory working memory: the 
storage and recall of sensory information 
by an artificial or biological neural 
system for a short duration after the 
relevant information is no longer 
observable. 
Task-state representation: collection 
of observable and non-observable 
information necessary to predict 
decision outcomes. The transitions 
between task states constitute a Markov 
decision process that allows RL 
algorithms to solve the reward 
maximisation problem. 
Value computations: the process by 
which the brain represents, updates and 
manipulates subjective values 
associated with stimuli or actions using 
sensory information, prior knowledge 
and goals.
largely overlooking their interaction. This paper aims to re-synthesise our current understanding 
of OFC–sensory cortical interactions during RL in light of new evidence for cognitive compu-
tations harboured within sensory cortices. We begin by outlining the anatomical connections be-
tween OFC and sensory cortices, then evaluate the roles of ‘sensory to OFC’ and ‘OFC to 
sensory’ pathways. Finally, we propose a conceptual framework in which reciprocal interactions 
jointly enable efficient RL.

Anatomy of OFC’s connectivity with sensory cortices 
The anatomical organisation of the OFC and its subregions’ contributions to reward-guided 
decision-making have been extensively reviewed [6,21,22]. OFC occupies areas 10,11,12,13,14 
[23,24] and comprises highly interconnected subregions [25]. Barring area 13a, which is agranular, 
primate OFC is primarily granular, with granularity increasing along a posterior-to-anterior gradient 
[26]. Given the broad functional and cytoarchitectural similarities between non-human primates 
(NHPs) and human OFC, findings from NHP studies are often viewed as applicable to human 
OFC [27], and we draw on them as evidence for human OFC functions. However, cross-species 
comparisons are not straightforward: while value signals during RL are found in human ventrome-
dial prefrontal cortex/medial OFC (vmPFC/mOFC), they are located in central OFC in monkeys, de-
spite cytoarchitectural and connectivity differences between these regions [28]. Thus, the precise 
homology between human and primate OFC remains a topic of active debate [28]. As the rodent 
OFC is agranular, some have argued that it is homologous to the agranular region of the human 
OFC (area 13a) [27]. In both species, this region shares reciprocal connections with sensory corti-
ces across all modalities and encodes reward value [29], with lesions impairing extinction learning 
[30]. However, rodents lack a clear homologue of the human granular OFC, and the translational 
relevance of rodent PFC studies to humans is debated (see [31,32] for detailed reviews). This de-
bate is more contentious than for NHP–human comparisons, likely due to greater phylogenetic dis-
tance. Nevertheless, animal models are essential for advancing our understanding of PFC function, 
as stressed by many [31,32]. Throughout this paper, we indicate when findings from rodent OFC 
studies are used to support our claims. 

In humans and NHPs, the OFC maintains reciprocal connections with a mixture of primary and 
higher sensory cortices across modalities [13,33]  (Figure 1A). These inputs are more prominent in 
the lateral OFC (lOFC) than the mOFC [25]. The OFC is considered a higher-order olfactory and gus-
tatory cortex, receiving strong inputs from the respective primary sensory areas. It also connects with 
primary and higher somatosensory cortices, while visual and auditory inputs arise predominantly 
from association areas, such as the ventral visual stream and belt/parabelt auditory regions 
[34,35]. These projections to the OFC spanning heterogeneous levels of sensory hierarchy have 
been hypothesised to convey stimulus identity signals [33], such as object and face recognition 
from the inferior temporal, fusiform, and rhinal cortices [34]. We discuss the evidence for this hypoth-
esis and other functions of feedforward sensory to OFC projections in the next sections. 

Interestingly, posterior OFC receives more inputs from primary sensory areas, while anterior OFC 
receives more from association areas [14]. Though some studies report structural and functional 
OFC connectivity with primary visual and auditory cortices in humans [20,33,36–38], these are not 
consistently supported by tracer studies and are therefore not the focus here. Notably, based on 
corticocortical interconnectivity findings, the OFC overlaps with broader ‘orbital’ and ‘medial’ prefrontal 
networks [25] implicated in sensory integration and emotional regulation hubs, respectively [39]. 

Sensory projections to OFC 
What is the functional role of bottom-up sensory inputs to OFC? This question has received 
considerable attention across species in recent decades [40–42]. Here, we first review the
2 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx



Value remapping: update of the value 
or reward associated with a stimulus or 
action based on new information or 
experience, enabling the adaptation of 
behaviour to a changing environment. 
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Figure 1. Major anatomical connections between sensory cortices and the orbitofrontal cortex (OFC). A lateral 
view of the major anatomical connections between orbitofrontal and sensory cortices in the human brain. The OFC shares 
reciprocal anatomical connections with sensory and association cortices from all sensory modalities [14]. These cortices include 
(i) primary and secondary somatosensory cortex (S1 and S2), somatosensory insula and the frontal operculum [14]; (ii) primary 
gustatory cortex for gustation [14]; (iii) piriform cortex, entorhinal cortex and anterior insula for olfaction [14,35]; (iv) the superior 
temporal gyrus, including the auditory rostral belt and parabelt for audition [35]; (v) the inferior temporal cortex (IT), perirhinal 
cortex and the superior temporal sulcus for vision [34]. As granularity increases from the OFC’s posterior-to-anterior gradient, 
multimodal sensory inputs also become sparser [26]. These anatomical connections enable the OFC (in particular, posterior 
OFC) to integrate multimodal sensory information from the environment about current states and rewards to support action 
selection during reinforcement learning tasks. Anatomical connectivity in this context is based on tracer studies in non-human 
primates. Dotted outlines indicate interior brain areas. Abbreviations: V1, primary visual cortex; V2–V4, higher visual cortices. 
prevailing view in systems neuroscience that these inputs merely provide the OFC with sensory 
information during RL. We then update this perspective in light of recently discovered cognitive 
functions of sensory cortices and emerging theories on the OFC’s role in representing latent 
task states.

How do sensory inputs classically support OFC value computations? 
RL unfolds as a series of interactions between an agent and its environment, typically through 
trial-and-error (Figure 1A). First, the agent estimates the current state from environmental inputs 
and its latent knowledge (value expectation, or an internal model of the world). It then selects an 
action that maximises future returns. The agent finally updates its latent knowledge based on the 
outcome (rewarding, aversive or neutral). From a computational perspective, the human OFC 
appears to be a critical component in many RL algorithms (Box 1), involved in distributed value 
computations and state representations (Figure 2A). These value computations include encoding 
subjective value [7], reward prediction errors (RPEs, in lOFC) [19], value comparisons (mOFC) 
[9,43], reward identity (lOFC) [41], and credit assignment (lOFC) [9,20]. Although these computa-
tions serve distinct roles within RL, many of them depend on inputs from sensory cortices to the 
OFC. 

Sensory cortices are thought to provide the OFC with essential information about environmental 
features, task uncertainty, and volatility inferred from stimuli statistics – enabling context-sensitive 
value encoding [42]. For instance, when we enjoy a cup of coffee, OFC neurons are thought to 
compute its subjective value by integrating sensory inputs (e.g., flavour, colour, and texture) 
with cognitive signals from subcortical regions. These include emotional inputs from the amyg-
dala (e.g., stress [44]), physiological states from the hypothalamus (e.g., hunger [45]), and reward 
or RPE information from the nucleus accumbens, ventral striatum and dopaminergic ventral teg-
mental area (VTA) pathways [12,46,47]. Additionally, contextual and memory-related information 
from the subcortical hippocampus and prefrontal cortical areas (e.g., brand reputation [11,48,49])
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Box 1. RL and the OFC 

RL provides a powerful framework to study decision-making. Yet, its neural implementation remains debated [53]. Here, 
we introduce several RL formalisms that could be supported by OFC–sensory interactions (Figure I). 

Model-free RL involves learning a decision policy through trial-and-error without explicitly modelling environmental dynam-
ics, aiming to maximise cumulative reward [2]. While the OFC may play a limited role in model-free learning [120], it 
contributes useful representations of reward values [7] and exploratory behaviour [3]. 

Model-based RL builds a model of the environment (i.e., state transitions) to guide decision-making [2]. The OFC supports 
this by encoding both current task states and higher-level abstracted task structure [88], binding sensory and latent 
information to form cognitive maps of task space [89]. 

Deep-RL leverages deep neural networks to handle high-dimensional state spaces [121]. Though originally applied to 
vision [122], recent work extends deep RL to model higher cognitive functions [123], including value encoding in the 
OFC via recurrent neural networks [124]. This architecture offers a compelling framework for modelling OFC–sensory 
interactions. For instance, bottom-up feature extraction through feedforward computation and top-down learning signals 
through backpropagation or other novel credit-assignment mechanisms such as prospective configuration [125]. 

Meta-RL allows agents to learn across tasks and timescales by updating meta-parameters through parallel reinforcement 
procedures [114,126]. These models learn ‘how to learn’ and generalise across contexts. Recurrent networks trained via 
meta-RL replicate key aspects of OFC dynamics during reversal learning in mice [115]. However, improved value discrim-
inability shown by the model was not observed experimentally – possibly because learning computations shifted to 
sensory areas via OFC feedback. 

Distributional RL extends standard RL by learning full reward distributions for state-action pairs rather than single expected 
values [127]. This captures variability in outcomes and supports more flexible decision-making. While direct evidence in 
OFC is limited, recent findings show OFC neurons may be tuned to stimuli near the tails of reward distributions [128]. 

Separately from RL, OFC may play roles in other cognitive frameworks, such as signalling ‘belief states’ within Bayesian 
inference frameworks [129]. Many of these models are not mutually exclusive, and studies have suggested they may even 
be used in parallel in certain tasks [53]. Thus, a possible reconciliation of these frameworks in the brain is that they are task 
and context-specific, with OFC, vlPFC, and frontopolar cortices potentially coordinating model arbitration [53]. 
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Figure I. Role of the orbitofrontal cortex (OFC) in reinforcement-guided learning (RL). (A) In model-free RL, the 
OFC may simply encode cached task state-action values. (B) In model-based RL, OFC may build the task space as a set of 
transition and reward functions (thus further tracking hidden task states, reward value, reward identity and stimulus-reward 
association). (C) In deep-RL, the OFC may represent deeper layers encoding high-level value and/or policy layers. The top-
down teaching signal from the OFC to sensory areas may be a sophisticated backpropagation process. (D) In Meta-RL, the 
OFC may track variables related to both the activity-based (Fast RL) as well as the plasticity-based (Slow RL). Plasticity-based 
RL process may control meta-parameters encoded directly in sensory areas. (E) In distributional RL, potentially similar to 
the model-free RL, the OFC may encode entire distributions of task states with cached values. Abbreviations: At, current trial’s 
chosen action; Rt-1, previous trial reward; St, current trial’s state. Reward distributions used in (E) are adapted from recent 
work [127].
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Figure 2. Contribution of sensory inputs to value computation and representation learning in the orbitofrontal 
cortex (OFC). (A) Schematic illustrating how the OFC may use higher-order cognitive information from sensory cortices to 
perform value computations. The OFC may use perceptual uncertainty signals [70] to modulate the strength of reward 
identity, credit assignment and outcome prediction codes [72,74]. Bottom-up attention and salience signals [15] highlight 
relevant stimuli and choices during reward learning [57], such as a slot machine catching your eye in a casino. Sensory 
working memory [67] can be used to compare sensory features of perceptually similar stimuli that predict reward, 
facilitating value comparison and credit assignment. (B) Proposed mechanism for representation learning in the OFC. 
Sensory inputs filtered through cognitive computations are integrated with contextual and memory information to compare 
perceived environments to a prior state ‘A’ [76]. If dissimilar, the OFC checks for similarity with previously experienced 
states (e.g., state ‘B’), which are stored in the hippocampus, entorhinal cortex (EC), and other prefrontal cortex (PFC) regions 
[11,76,82,83]. If no match is found, the OFC defines a novel state ‘C’ [76] with an associated exploration bonus [3] for new 
options, supporting adaptive learning. Abbreviation: RPE, reward prediction error. 
reaches the OFC. Intriguingly, rodent studies have shown that OFC population-level value 
responses may emerge from subpopulations of ‘pessimistic’ and ‘optimistic’ neurons that under-
estimate and overestimate, respectively, the utility and probability of reward [50], a mechanism 
that could extend to primates.

The importance of sensory inputs to OFC in value-based decisions has been illustrated through 
chemogenetics silencing of perirhinal cortex projections to the OFC, which reduced sensitivity 
to reward magnitude and disrupted expected value computations [42]. As the perirhinal cortex 
is often considered an extension of the ‘ventral visual stream’ and  is  associated  with  object
recognition, these findings suggest that the OFC integrates stimuli, or event, identity information 
with reward associations to inform choices.
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 5
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The OFC transmits integrated value signals via local circuits that compute comparisons 
between options, and disrupting these signals (electrically or pharmacologically) impairs 
behaviour [4,43]. Its access to multimodal sensory inputs presumably allows integration of 
rewards across modalities – for example, combining gustatory and olfactory features of coffee 
into a unified scalar value [51]. Supporting this view, subpopulations of OFC neurons encode 
sensory-specific  valu  e [52], which may be combined to enable cross-modal value compari-
sons. Although value signals also exist in the dopaminergic system [47], the OFC stands out 
for its consistent value representations across tasks [53]. 

To support optimal decisions in RL, the lOFC assigns value to specific stimuli and actions – a 
process known as credit assignment [9,42]. This likely relies on dynamic interactions with sensory 
cortices, which can provide real-time contextual information [42]. When rewards are immediate, 
lOFC neurons could integrate sensory inputs with reward signals from the ventral striatum and 
dopaminergic systems [12,47]. For delayed rewards, it may draw on contextual and mnemonic 
information from the hippocampus, prefrontal cortex, and working memory [11,48,49,54]. 
Sensory inputs may thus modulate credit assignment strength in both cases, enabling flexible 
value comparisons across time and contexts. 

Sensory areas precompute task information to support OFC value computations 
In value computations, projecting sensory information about observable environmental features 
to the OFC is a core function of sensory cortices. But they may also transmit higher-order cogni-
tive signals, such as stimulus salience – how much a stimulus stands out – encoded via saliency 
maps [55] and population activity patterns [56]. This bottom-up attentional capture can influ-
ence prefrontal areas, including the OFC [57,58]  (Figure 2A). For instance, OFC neurons have 
been shown to transiently encode the value of a luminance-changing cue even when it lacked 
predictive value [57], suggesting salience alone can modulate OFC activity. Since salient stimuli 
often signal potential rewards or punishments [59], they may accelerate OFC value coding 
[57,58]  (Figure 2A). Consistent with this interpretation, rats’ ventral/lateral OFC neurons preferen-
tially encode salient stimuli, regardless of reward association [60]. The OFC may improve credit 
assignment and facilitate learning in complex environments by amplifying salient inputs. However, 
it remains unclear whether salience inputs to the OFC come primarily from sensory cortices or 
other brain areas such as the mediodorsal thalamus and the inferior frontal gyrus [61,62]. 

Beyond bottom-up attentional capture mechanisms, sensory cortices also support sensory 
working memory [63–65]. Sensory neurons can maintain stimulus representations after offset 
through sustained activity, population coding, and oscillatory synchrony with the prefrontal cortex 
[16,64–66]. The fidelity of these representations can even predict behavioural performance during 
delayed discrimination tasks [67]. This function could be especially useful during credit assign-
ment, where the OFC must discriminate between multiple stimuli or their combinations. While 
the hippocampus and PFC also provide working memory signals to the OFC [54], sensory cortex 
inputs may deliver more precise, real-time information about recent stimuli (Figure 2A). 

When faced with noisy or ambiguous input, the brain must evaluate competing interpretations 
of the environment. A useful concept here is perceptual uncertainty, the inverse of how confi-
dently an agent can identify the true signal. Perceptual uncertainty aligns well with the Bayesian 
perspective, in which probabilistic neural codes in sensory areas simultaneously encode the 
estimated identity (mean) and uncertainty (variance) of a stimulus [68]. Information about stim-
ulus uncertainty and probability [69,70] could provide valuable information for downstream 
computations in regions like the OFC. Indeed, higher visual cortices, such as the inferior tem-
poral cortex, have been shown to have enhanced connectivity with frontal cortices in trials
6 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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with high perceptual uncertainty [70]. It is worth noting that the OFC itself is thought to track 
perceptual uncertainty as a scalar signal [71]. The OFC might further integrate perceptual un-
certainty with other sources of uncertainty (e.g., reward probability [72]) to generate abstract 
belief or confidence signals, guiding action selection [73]. Confidence signals may also intrinsi-
cally modulate value computations in the OFC (Figure 2A). Indeed, one of our laboratories 
found that higher perceptual uncertainty corresponded to reduced value-related activity in 
the mOFC/vmPFC [74]. Relayed to the OFC, these sensory signals could refine outcome pre-
dictions for perceptually similar stimuli. 

How do sensory areas support task representations in the OFC? 
While traditionally associated with value computations, a parallel research stream suggests 
that lOFC [11] and mOFC/vmPFC [75] also represent abstract task states within a non-spatial 
cognitive map (see [6,76]). Proposed by Tolman [77] and later supported by hippocampal 
studies [78], the cognitive map concept has been expanded to encompass abstract task struc-
tures [79,80]. A key study [7] found that mOFC selectively encoded task-relevant observable 
variables (in the current trial) and latent variables (relevant information in the previous trial) but 
not task-irrelevant variables, indicating its role in representing the current task state [8]. This 
abstract representation allows the OFC to guide  behaviour  via  projections  to  the  striatum,
ACC, and lateral PFC [79,81], supporting RL, generalisation, and continual learning. 

We propose that sensory cortices are central to the OFC’s ability to efficiently construct task-state 
representations – a process known as representation learning [76]. The OFC may compare 
incoming sensory inputs with stored task states in the hippocampus and entorhinal cortex 
[82,83]. If the input matches a known state, the OFC reuses and updates that memory; if not, it 
generates a new state. Algorithmically, this could involve sequential comparisons (Figure 2B). 
For instance, an agent currently in state ‘A’ might: (i) update their current state to ‘At+1’ if the 
input is similar; (ii) switch to a known state ‘B’; or (iii) create a new state ‘C’. Sensory cortices 
may additionally compress and relay features like salience, working memory content, and 
perceptual uncertainty to support this process. Updated states can then be sent back to memory 
systems and other prefrontal areas, continuously recalibrating the brain’s internal cognitive map 
[11,82,83]. 

Our proposal aligns with models of hippocampal function that balance pattern separation and 
generalisation [84], and echoes recent computational models of working memory that invoke 
similar mechanisms [85]. We suggest that sensory cortices provide the OFC with precomputed, 
compressed task knowledge (stimuli identity, uncertainty, past stimuli, salience) that support the 
construction of task states [20,80,86]. While sensory cortices do not have access to the whole 
set of associations as the OFC or hippocampus might have, they can still reduce the dimension-
ality of this sensory input in a useful manner, that is, they can 'compress’ task knowledge. This 
early-stage dimensionality reduction at the sensory level may facilitate representation learning in 
the OFC. This idea also aligns with recent theories of compositionality, which propose 
that both biological and artificial systems build complex representations by combining simpler, 
reusable components [87]. 

Recent research suggests that the OFC additionally encodes broader cognitive maps – represen-
tations of the relationships between task elements or states [88,89]. These maps are well suited 
for supporting model-based RL (Box 1) as they help predict how actions lead to state transitions. 
Cognitive maps (or meta-maps) likely span the OFC, the hippocampus, the entorhinal cortex and 
other prefrontal regions [48,82,83], though how this information is distributed across these re-
gions remains under investigation. Notably, hippocampal-to-OFC theta oscillations may transmit
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 7
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state information, with the OFC preferentially encoding state-dependent values rather than states 
themselves [90]. Developing theoretical frameworks that reconcile OFC’s function in task-state 
representation and state-dependent valuation will be essential moving forward. 

OFC control signals to sensory areas support RL 
Similar to bottom-up sensory to OFC projections, the function of top-down projections has been 
studied across species in the context of RL [19,91]. Intriguingly, these top-down projections may 
drive reward expectation [92], value-driven attentional capture [93], and coding remapping [19] 
directly within sensory areas. In the following sections, we review the evidence supporting 
these functions and discuss their implications for sensory processing during RL. 

OFC control signals improve perceptual processing in sensory areas 
Value signals can enhance perception [20,94], with high-reward stimuli often more accurately 
discriminated than low-reward ones [95]. One mechanism may involve OFC-derived teaching 
signals that adjust gain or receptive fields in sensory cortices based on reward history or expec-
tations [92]  (Figure 3A). Rodent studies reveal modality-specific pathways for this effect. In vision,
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Figure 3. The orbitofrontal cortex (OFC)–sensory cortex interactions supporting reinforcement-based adaptive
learning. (A) Following a rewarding experience (e.g., an enjoyable coffee), the OFC can engage two complementary top-
down mechanisms. First, it sends a reward-expectation signal that enhances the encoding strength of sensory neurons
for stimuli associated with reward [99]. Second, the OFC issues a goal-directed attentional signal [93] that increases sensory
neuron responses to goal-relevant stimuli while filtering out irrelevant stimuli. Both mechanisms sharpen neuronal represen-
tations of relevant stimuli, resulting in enhanced perception and improved sensory acuity for task-relevant features. Other-
wise, when a stimulus’ value changes abruptly (e.g., the coffee becomes unpleasant), the OFC can send top-down
remapping signals to sensory cortices [19,91]. These signals dampen neural responses to the previously rewarding stimulus
supporting rapid behavioural adaptations. (B) In our proposed model, sensory cortices send multiple information streams to
the OFC: sensory features help to construct OFC task states. Bottom-up attention directs the OFC to prioritise salient stimuli
which may trigger updates to task state or goals. Sensory working memory enables discrimination between similar stimul
(e.g., distinguishing task-relevant stimulus A from a recent but irrelevant stimulus B), improving outcome predictions
These predictions in turn drive top-down reward expectation and value-remapping signals back to sensory cortices. Percep-
tual uncertainty reflects the reliability of stimulus representations and informs OFC confidence estimates that modulate its
outputs, enhancing signals under high certainty and decreasing signal strength when confidence is low. OFC remapping
signals enable rapid neural re-tuning during changes in task context.
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OFC projections to primary visual cortex (V1) somatostatin interneurons suppress responses to 
unrewarded stimuli [96]; in audition and olfaction, projections to excitatory and inhibitory neurons 
in primary auditory cortex (A1) and piriform cortex amplify responses to reward-associated stimuli 
[97,98]. These findings suggest conserved mechanisms by which the OFC can modulate higher 
visual (e.g., fusiform cortex [99]) and auditory regions (belt areas and superior temporal gyrus 
[100]) to support perception via value-based feedback. Note that OFC-to-primary visual and au-
ditory cortex (A1, V1) projections appear unique to rodents. Complementary to reward expecta-
tion, value-driven attentional capture enhances perception across modalities: stimuli linked to 
reward or punishment reliably draw attention in both visual and auditory domains [101,102]. This 
is typically attributed to frontoparietal control networks, which modulate sensory cortices via 
long-range projections [103]. However, the OFC may also directly influence sensory cortices, 
strengthening task-relevant sensory representations via its own projections [93]. This mechanism 
could act synergistically with frontoparietal and midbrain (e.g., VTA) inputs [104]  to  sharpen  task-
relevant perception during RL (Figure 3A).

It is important to mention that the OFC connects with higher-order visual and auditory cortices, 
but with both primary and higher cortices in other sensory modalities. This anatomical pattern 
suggests that top-down OFC signals may selectively enhance perception at the level of what is 
typically most relevant for behaviour, such as stimulus identity in vision (e.g., objects [99]) and 
audition (e.g., speech [100]). While in other modalities, these signals may additionally modulate 
feature-level discrimination. Since rodents exhibit direct projections from OFC to the primary 
visual [96] and auditory cortices [97], there may be evolutionary divergence in the role and 
granularity of OFC top-down control across species. 

OFC signals can remap value encoding in sensory areas 
OFC projections to sensory cortices can enact value remapping, that is, signal abrupt changes 
in stimulus-outcome contingencies (Figure 3A) [19,91]. In one of our laboratories, we investigated 
these top-down ‘teaching’ signals using fMRI during a probabilistic tactile reversal learning task 
[21]. Following contingency reversal, we observed a transient increase in functional connectivity 
between the lOFC and ipsilateral reward-selective regions of primary somatosensory cortex 
(S1), which declined as participants adapted. Crucially, lOFC outcome-related activity preceded 
S1 responses during the reversal phase, consistent with lOFC-driven reconfiguration of sensory-
reward representations to support flexible behaviour. Nevertheless, confirming the directionality 
of these signals will require causal methods such as Granger causality, transcranial stimulation, 
or neurofeedback-based approaches [105,106]. LOFC activity also decreases with learning exper-
tise, decreasing as participants move from naïve to expert phases [19]. This mirrors findings that 
PFC engagement decreases as performance becomes more efficient [107], possibly reflecting a 
reduction in cognitive demands. One interpretation is that, during expert phases, reward-related 
responses become stable and selective in sensory areas such as S1 [19], the auditory belt [108], 
primary gustatory cortex [109], and the inferior temporal cortex [110] – allowing these areas to as-
sume greater value processing roles. This shift may offload computational burden from lOFC once 
stimulus-action mappings are well established [19]. Lesion studies nonetheless offer a nuanced 
picture: while OFC damage impairs reversal learning and increases lose-stay behaviour in probabi-
listic tasks [111], it has minimal effects in deterministic settings [112]. This suggests that OFC 
switch signals may be particularly relevant in uncertain environments in primates. 

Complementing correlational findings in humans and primates, rodent studies offer causal 
evidence for OFC-driven value remapping in sensory cortices. In one study from one of our 
laboratories, mice performed a tactile Go/No-Go reversal learning task [91]. Following reversal, 
a fraction of value- and outcome-selective S1 neurons initially lost their selectivity but reacquired
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 9
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Outstanding questions 
Are the mechanisms underpinning 
OFC teaching signals to sensory 
areas distinct across task space and 
task type? Are they conserved across 
species, and what might that signify? 

What function do value representations 
in sensory areas play in value-guided 
decision-making? 

Is value an abstract state in RL? If so, 
how can this be integrated into RL 
models? 

How are value and task-state repre-
sentations in OFC used to create 
teaching signals that cause plasticity 
changes in sensory areas? 

Do unilateral and bilateral coupling 
measures between OFC and sensory 
cortices in human learning studies 
generalise across sensory modalities? 

Is the underlying mechanism of top-
down OFC teaching signals to sensory 
cortices consistent across sensory 
modalities? 

What is the role of intrinsic value 
signals, for example, derived from 
affective computations? 

What happens when value and 
sensory-OFC loops converge on the 
wrong dimension(s)? 

Does silencing of salience, perceptual 
uncertainty, or working memory 
encoding neurons in sensory cortices 
alter OFC task representations?
it with learning – unless lOFC➔S1 projections were silenced, which abolished both neural 
remapping and behavioural adaptation. Further analyses revealed that this top-down signal 
also remapped S1 reward-expectation selectivity and resembled a context-prediction error 
[113]. Such a signal is consistent with model-based and meta-RL frameworks (Box 1), as it 
supports generalisation by updating stimulus-outcome expectations even for unobserved stimuli 
following reversal [114,115]. 

Closing the loop through a holistic RL framework of OFC and sensory interactions 
Most RL research treats bottom-up sensory inputs to OFC and top-down OFC projections to 
sensory areas as separate processes. Mirroring this approach, we introduced their roles sepa-
rately. But this division overlooks their dynamic interaction. In reality, bottom-up inputs can 
shape precise top-down signals, and vice versa. We now propose a closed-loop framework 
that captures how synergy between these pathways can benefit RL. 

In our framework, sensory inputs help build and update accurate task-state representations in 
the OFC (Figure 3B), encoding all relevant variables, including predictions of prospective 
outcomes. These internal OFC states then guide precise reward expectations and attentional sig-
nals, which, in turn, enhance perception of task-relevant features. Such a reciprocal loop reduces 
perceptual uncertainty, sharpens neural representations, and supports adaptive behaviour by 
continuously aligning sensory processing with task demands [56]. 

Reversal learning is a second key context to discuss the importance of reciprocal OFC-sensory 
interactions in RL. After reversal, top-down OFC signals may remap outcome and expectation 
responses in sensory cortices. These areas, in turn, may integrate sensory-reward signals with 
higher-order cognitive information to deliver compressed, task-relevant inputs back to OFC for 
task-state reconstruction and comparison. Additionally, sensory inputs conveying perceptual 
uncertainty may modulate the strength of OFC feedback. In ambiguous contexts, lower decision 
confidence [73] could weaken or diffuse OFC signals, resulting in less precise modulation of 
sensory encoding that reflects uncertainty in credit assignment. 

While several perspectives on OFC function in RL exist (Box 1), our framework emphasises the 
OFC’s role in constructing task-state representations within a broader ‘world model’ or cognitive 
map, concepts often linked to model-based and meta-RL. Our framework, however, does not 
exclude other algorithmic implementations such as model-free RL, which we suspect may be 
engaged differentially depending on task demands, behavioural strategies, or environmental 
context, potentially shaping top-down teaching signals. Although our focus is on OFC-sensory in-
teractions in task-state representation, choice, and learning, we recognise the critical roles of other 
regions – including the hippocampus, entorhinal cortex, midbrain, and mesolimbic system – in 
supporting RL [53]. We thus position our proposal as one flexible component within a broader, 
distributed neural architecture that supports RL. 

Concluding remarks 
The functional role of sensory cortices in cognition has undergone a profound shift. Once consid-
ered passive encoders of physical features – such as tonotopic [116], somatotopic maps [117], or 
visual receptive fields [118] – they are now recognised as active contributors to higher-order func-
tions. This reappraisal carries important, yet underexplored, implications for how sensory projec-
tions influence executive regions, such as the OFC, during learning and decision-making. 

We have highlighted how sensory cortices contribute to bottom-up attention [15], sensory work-
ing memory [16] and perceptual uncertainty [17], and how these signals, when projected to the
10 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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OFC, can support value computations and representation learning. We also discussed how top-
down OFC signals may enhance the encoding of task-relevant and reward-associated stimuli in sen-
sory cortices, potentially improving perception and redistributing value computations from the OFC to 
sensory areas. While some of these ideas are speculative, the role of value coding in sensory cortices 
during RL is a promising direction for future research (see Outstanding questions). These insights ex-
tend beyond neuroscience (Box 1), suggesting that AI systems (which often neglect cognitive roles 
for sensory units) may benefit from incorporating such dynamics. While some mechanisms – like 
concept-specific units [119] – can arise in deep learning models, others, such as top-down mod-
ulation of sensory representations, are not easily captured by standard backpropagation. Whether 
OFC-like tuning shifts can be modelled in artificial systems remains an exciting challenge.

In sum, we proposed a framework in which reciprocal OFC-sensory cortex interactions dynam-
ically support RL. Future work should test these bidirectional circuits through carefully designed 
experiments (see Outstanding questions). Ultimately, we advocate moving beyond simple 
‘A-to-B/B-to-A’ models towards an integrative, systems-level understanding (‘A  and  B’)  of
the circuitry underlying value-guided behaviou r.
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