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The orbitofrontal cortex (OFC) is a hub for value-guided decision-making, linked
reciprocally with both cortical and subcortical regions. While projections from
sensory areas to the OFC - and vice versa — are known to support goal-
directed learning, these projections have often been studied in isolation, and
their joint effect remains poorly understood. Here, we revisit these circuits
through a unifying computational framework. We propose that sensory cortices
send compressed task knowledge to the OFC to build abstract task models,
while OFC feedback provides teaching signals that reshape sensory representa-
tions within the cortical hierarchy. This bidirectional exchange equips sensory
areas with cognitive functions that extend well beyond passive feature detection,
with significant implications for our understanding of learning, cognitive models,
and artificial neural networks.

The orbitofrontal and sensory cortical circuit in learning

When trying a new café during a morning commute, a rich, flavourful coffee will encourage you
to return the next day, whereas a bland one will ensure that you will not. This everyday example
ilustrates the essence of reinforcement-guided learning (RL) (see Glossary), an effective frame-
work for modelling learning processes [1,2]. Among the brain’s critical contributors to RL is the
orbitofrontal cortex (OFC) [3-5], long recognised for its role in value computations and task-
state representation [6-8]. Damage to the OFC impairs critical components of RL, including
credit assignment and response—-outcome mappings [9,10]. These computations depend on the
OFC’s coordinated interaction with several cortical and subcortical brain areas, notably the hippo-
campus and striatum [11,12]. However, only recently have we begun to unearth the importance of
sensory areas’ interactions with OFC.

Sensory cortices filter, represent, and relay sensory information, operating within a hierarchically
organised system often known as the sensory hierarchy. These cortices maintain reciprocal
connections with the OFC, supporting the bidirectional exchange of information [13]. Notably,
the OFC is among the few frontal regions receiving direct anatomical input from all five sensory
modalities [14], enabling multisensory information integration, thought to be necessary to form
generalisable value representations [13]. Intriguingly, recent studies have challenged the tradi-
tional view of sensory cortices as mere feature detectors, revealing they may accommodate spe-
cific cognitive functions such as attention [15], working memory [16], tracking perceptual
uncertainty [17], and active feature selection [18]. Human neuroimaging studies have even re-
ported value-related coding in sensory areas that may depend on OFC input during RL tasks
[19,20].

Despite these findings, research has progressed mainly along parallel tracks — either examining
how sensory processing supports OFC function or how OFC modulates sensory functioning —
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largely overlooking their interaction. This paper aims to re-synthesise our current understanding
of OFC—-sensory cortical interactions during RL in light of new evidence for cognitive compu-
tations harboured within sensory cortices. We begin by outlining the anatomical connections be-
tween OFC and sensory cortices, then evaluate the roles of ‘sensory to OFC’ and ‘OFC to
sensory’ pathways. Finally, we propose a conceptual framework in which reciprocal interactions
jointly enable efficient RL.

Anatomy of OFC’s connectivity with sensory cortices

The anatomical organisation of the OFC and its subregions’ contributions to reward-guided
decision-making have been extensively reviewed [6,21,22]. OFC occupies areas 10,11,12,13,14
[23,24] and comprises highly interconnected subregions [25]. Barring area 13a, which is agranular,
primate OFC is primarily granular, with granularity increasing along a posterior-to-anterior gradient
[26]. Given the broad functional and cytoarchitectural similarities between non-human primates
(NHPs) and human OFC, findings from NHP studies are often viewed as applicable to human
OFC [27], and we draw on them as evidence for human OFC functions. However, cross-species
comparisons are not straightforward: while value signals during RL are found in human ventrome-
dial prefrontal cortex/medial OFC (vmPFC/mOFC), they are located in central OFC in monkeys, de-
spite cytoarchitectural and connectivity differences between these regions [28]. Thus, the precise
homology between human and primate OFC remains a topic of active debate [28]. As the rodent
OFC is agranular, some have argued that it is homologous to the agranular region of the human
OFC (area 13a) [27]. In both species, this region shares reciprocal connections with sensory corti-
ces across all modalities and encodes reward value [29], with lesions impairing extinction learning
[30]. However, rodents lack a clear homologue of the human granular OFC, and the translational
relevance of rodent PFC studies to humans is debated (see [31,32] for detailed reviews). This de-
bate is more contentious than for NHP—human comparisons, likely due to greater phylogenetic dis-
tance. Nevertheless, animal models are essential for advancing our understanding of PFC function,
as stressed by many [31,32]. Throughout this paper, we indicate when findings from rodent OFC
studies are used to support our claims.

In humans and NHPs, the OFC maintains reciprocal connections with a mixture of primary and
higher sensory cortices across modalities [13,33] (Figure 1A). These inputs are more prominent in
the lateral OFC (IOFC) than the mOFC [25]. The OFC is considered a higher-order olfactory and gus-
tatory cortex, receiving strong inputs from the respective primary sensory areas. It also connects with
primary and higher somatosensory cortices, while visual and auditory inputs arise predominantly
from association areas, such as the ventral visual stream and belt/parabelt auditory regions
[34,35]. These projections to the OFC spanning heterogeneous levels of sensory hierarchy have
been hypothesised to convey stimulus identity signals [33], such as object and face recognition
from the inferior temporal, fusiform, and rhinal cortices [34]. We discuss the evidence for this hypoth-
esis and other functions of feedforward sensory to OFC projections in the next sections.

Interestingly, posterior OFC receives more inputs from primary sensory areas, while anterior OFC
receives more from association areas [14]. Though some studies report structural and functional
OFC connectivity with primary visual and auditory cortices in humans [20,33,36-38], these are not
consistently supported by tracer studies and are therefore not the focus here. Notably, based on
corticocortical interconnectivity findings, the OFC overlaps with broader ‘orbital’ and ‘medial’ prefrontal
networks [25] implicated in sensory integration and emotional regulation hubs, respectively [39].

Sensory projections to OFC

What is the functional role of bottom-up sensory inputs to OFC? This question has received
considerable attention across species in recent decades [40-42]. Here, we first review the

2 Trendsin Cognitive Sciences, Month 2025, Vol. xx, No. xx

Trends in Cognitive Sciences

Glossary

Bottom-up attentional capture:
allocation of attention to a stimulus that
is sufficiently salient, driven by the
sensory properties of the stimulus that
might differ from top-down attended
features.

Cognitive map: the systematic
organisation of physical or abstract
entities and the relationship between
them in artificial or biological neural
systems.

OFC-sensory cortical interactions:
the anatomical and functional direct and
indirect connections between the
orbitofrontal cortex and sensory cortices
from all five sensory modalities.
Perceptual uncertainty: the degree of
ambiguity in the agent's perception of
stimuli in its environment, which can
arise from various sources, including
sensory noise, ambiguity in the
environment, and uncertainty in the
agent's internal models.
Reinforcement-guided learning
(RL): a trial-and-error leaming process
shaped by rewarding and aversive
outcomes.

Representation learning: learning a
representation of the environment based
on sampled stimuli that makes it easier
to extract useful information according
to the agent’s goal.

Sensory hierarchy: classical
hierarchical organisation of sensory
processing in the brain, where primary
sensory areas receive thalamic
projections of sensory information and
encode sensory feature information
before relaying this information to higher-
order sensory areas involved in higher
functions such as object recognition.
Sensory working memory: the
storage and recall of sensory information
by an artificial or biological neural
system for a short duration after the
relevant information is no longer
observable.

Task-state representation: collection
of observable and non-observable
information necessary to predict
decision outcomes. The transitions
between task states constitute a Markov
decision process that allows RL
algorithms to solve the reward
maximisation problem.

Value computations: the process by
which the brain represents, updates and
manipulates subjective values
associated with stimuli or actions using
sensory information, prior knowledge
and goals.
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Value remapping: update of the value
. OFC or reward associated with a stimulus or
action based on new information or
experience, enabling the adaptation of
behaviour to a changing environment.
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Figure 1. Major anatomical connections between sensory cortices and the orbitofrontal cortex (OFC). A lateral
view of the major anatomical connections between orbitofrontal and sensory cortices in the human brain. The OFC shares
reciprocal anatomical connections with sensory and association cortices from all sensory modalities [14]. These cortices include
(i) primary and secondary somatosensory cortex (S1 and S2), somatosensory insula and the frontal operculum [14]; (i) primary
gustatory cortex for gustation [14]; (iii) piriform cortex, entorhinal cortex and anterior insula for olfaction [14,35]; (iv) the superior
temporal gyrus, including the auditory rostral belt and parabelt for audition [35]; (v) the inferior temporal cortex (IT), perirhinal
cortex and the superior temporal sulcus for vision [34]. As granularity increases from the OFC’s posterior-to-anterior gradient,
multimodal sensory inputs also become sparser [26]. These anatomical connections enable the OFC (in particular, posterior
OFC) to integrate multimodal sensory information from the environment about current states and rewards to support action
selection during reinforcement learning tasks. Anatomical connectivity in this context is based on tracer studies in non-human
primates. Dotted outlines indicate interior brain areas. Abbreviations: V1, primary visual cortex; V2-V4, higher visual cortices.

prevailing view in systems neuroscience that these inputs merely provide the OFC with sensory
information during RL. We then update this perspective in light of recently discovered cognitive
functions of sensory cortices and emerging theories on the OFC’s role in representing latent
task states.

How do sensory inputs classically support OFC value computations?

RL unfolds as a series of interactions between an agent and its environment, typically through
trial-and-error (Figure 1A). First, the agent estimates the current state from environmental inputs
and its latent knowledge (value expectation, or an internal model of the world). It then selects an
action that maximises future returns. The agent finally updates its latent knowledge based on the
outcome (rewarding, aversive or neutral). From a computational perspective, the human OFC
appears to be a critical component in many RL algorithms (Box 1), involved in distributed value
computations and state representations (Figure 2A). These value computations include encoding
subjective value [7], reward prediction errors (RPEs, in IOFC) [19], value comparisons (MOFQC)
[9,43], reward identity (OFC) [41], and credit assignment (IOFC) [9,20]. Although these computa-
tions serve distinct roles within RL, many of them depend on inputs from sensory cortices to the
OFC.

Sensory cortices are thought to provide the OFC with essential information about environmental
features, task uncertainty, and volatility inferred from stimuli statistics — enabling context-sensitive
value encoding [42]. For instance, when we enjoy a cup of coffee, OFC neurons are thought to
compute its subjective value by integrating sensory inputs (e.g., flavour, colour, and texture)
with cognitive signals from subcortical regions. These include emotional inputs from the amyg-
dala (e.g., stress [44]), physiological states from the hypothalamus (e.g., hunger [45]), and reward
or RPE information from the nucleus accumbens, ventral striatum and dopaminergic ventral teg-
mental area (VTA) pathways [12,46,47]. Additionally, contextual and memory-related information
from the subcortical hippocampus and prefrontal cortical areas (e.g., brand reputation [11,48,49)])
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Box 1. RL and the OFC

RL provides a powerful framework to study decision-making. Yet, its neural implementation remains debated [53]. Here,
we introduce several RL formalisms that could be supported by OFC—sensory interactions (Figure I).

Model-free RL involves learning a decision policy through trial-and-error without explicitly modelling environmental dynam-
ics, aiming to maximise cumulative reward [2]. While the OFC may play a limited role in model-free learning [120], it
contributes useful representations of reward values [7] and exploratory behaviour [3].

Model-based RL builds a model of the environment (i.e., state transitions) to guide decision-making [2]. The OFC supports
this by encoding both current task states and higher-level abstracted task structure [88], binding sensory and latent
information to form cognitive maps of task space [89].

Deep-RL leverages deep neural networks to handle high-dimensional state spaces [121]. Though originally applied to
vision [122], recent work extends deep RL to model higher cognitive functions [123], including value encoding in the
OFC via recurrent neural networks [124]. This architecture offers a compelling framework for modelling OFC-sensory
interactions. For instance, bottom-up feature extraction through feedforward computation and top-down learning signals
through backpropagation or other novel credit-assignment mechanisms such as prospective configuration [125].

Meta-RL allows agents to learn across tasks and timescales by updating meta-parameters through parallel reinforcement
procedures [114,126]. These models learn ‘how to learn’ and generalise across contexts. Recurrent networks trained via
meta-RL replicate key aspects of OFC dynamics during reversal learning in mice [115]. However, improved value discrim-
inability shown by the model was not observed experimentally — possibly because learning computations shifted to
sensory areas via OFC feedback.

Distributional RL extends standard RL by learning full reward distributions for state-action pairs rather than single expected
values [127]. This captures variability in outcomes and supports more flexible decision-making. While direct evidence in
OFC is limited, recent findings show OFC neurons may be tuned to stimuli near the tails of reward distributions [128].

Separately from RL, OFC may play roles in other cognitive frameworks, such as signalling ‘belief states” within Bayesian
inference frameworks [129]. Many of these models are not mutually exclusive, and studies have suggested they may even
be used in parallel in certain tasks [53]. Thus, a possible reconciliation of these frameworks in the brain is that they are task
and context-specific, with OFC, VIPFC, and frontopolar cortices potentially coordinating model arbitration [53].
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Figure |. Role of the orbitofrontal cortex (OFC) in reinforcement-guided learning (RL). (&) In model-free RL, the
OFC may simply encode cached task state-action values. (B) In model-based RL, OFC may build the task space as a set of
transition and reward functions (thus further tracking hidden task states, reward value, reward identity and stimulus-reward
association). (C) In deep-RL, the OFC may represent deeper layers encoding high-level value and/or policy layers. The top-
down teaching signal from the OFC to sensory areas may be a sophisticated backpropagation process. (D) In Meta-RL, the
OFC may track variables related to both the activity-based (Fast RL) as well as the plasticity-based (Slow RL). Plasticity-based
RL process may control meta-parameters encoded directly in sensory areas. (E) In distributional RL, potentially similar to
the model-free RL, the OFC may encode entire distributions of task states with cached values. Abbreviations: A;, current trial’s
chosen action; R4, previous trial reward; S;, current trial’s state. Reward distributions used in (E) are adapted from recent
work [127].
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Figure 2. Contribution of sensory inputs to value computation and representation learning in the orbitofrontal
cortex (OFC). (A) Schematic illustrating how the OFC may use higher-order cognitive information from sensory cortices to
perform value computations. The OFC may use perceptual uncertainty signals [70] to modulate the strength of reward
identity, credit assignment and outcome prediction codes [72,74]. Bottom-up attention and salience signals [15] highlight
relevant stimuli and choices during reward learning [57], such as a slot machine catching your eye in a casino. Sensory
working memory [67] can be used to compare sensory features of perceptually similar stimuli that predict reward,
facilitating value comparison and credit assignment. (B) Proposed mechanism for representation learning in the OFC.
Sensory inputs filtered through cognitive computations are integrated with contextual and memory information to compare
perceived environments to a prior state ‘A’ [76]. If dissimilar, the OFC checks for similarity with previously experienced
states (e.g., state ‘B’), which are stored in the hippocampus, entorhinal cortex (EC), and other prefrontal cortex (PFC) regions
[11,76,82,83]. If no match is found, the OFC defines a novel state ‘C’ [76] with an associated exploration bonus [3] for new
options, supporting adaptive learning. Abbreviation: RPE, reward prediction error.

reaches the OFC. Intriguingly, rodent studies have shown that OFC population-level value
responses may emerge from subpopulations of ‘pessimistic’ and ‘optimistic’ neurons that under-
estimate and overestimate, respectively, the utility and probability of reward [50], a mechanism
that could extend to primates.

The importance of sensory inputs to OFC in value-based decisions has been illustrated through
chemogenetics silencing of perirhinal cortex projections to the OFC, which reduced sensitivity
to reward magnitude and disrupted expected value computations [42]. As the perirhinal cortex
is often considered an extension of the ‘ventral visual stream’ and is associated with object
recognition, these findings suggest that the OFC integrates stimuli, or event, identity information
with reward associations to inform choices.
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The OFC transmits integrated value signals via local circuits that compute comparisons
between options, and disrupting these signals (electrically or pharmacologically) impairs
behaviour [4,43]. Its access to multimodal sensory inputs presumably allows integration of
rewards across modalities — for example, combining gustatory and olfactory features of coffee
into a unified scalar value [51]. Supporting this view, subpopulations of OFC neurons encode
sensory-specific value [52], which may be combined to enable cross-modal value compari-
sons. Although value signals also exist in the dopaminergic system [47], the OFC stands out
for its consistent value representations across tasks [53].

To support optimal decisions in RL, the IOFC assigns value to specific stimuli and actions — a
process known as credit assignment [9,42]. This likely relies on dynamic interactions with sensory
cortices, which can provide real-time contextual information [42]. When rewards are immediate,
IOFC neurons could integrate sensory inputs with reward signals from the ventral striatum and
dopaminergic systems [12,47]. For delayed rewards, it may draw on contextual and mnemonic
information from the hippocampus, prefrontal cortex, and working memory [11,48,49,54].
Sensory inputs may thus modulate credit assignment strength in both cases, enabling flexible
value comparisons across time and contexts.

Sensory areas precompute task information to support OFC value computations

In value computations, projecting sensory information about observable environmental features
to the OFC is a core function of sensory cortices. But they may also transmit higher-order cogni-
tive signals, such as stimulus salience — how much a stimulus stands out — encoded via saliency
maps [55] and population activity patterns [56]. This bottom-up attentional capture can influ-
ence prefrontal areas, including the OFC [57,58] (Figure 2A). For instance, OFC neurons have
been shown to transiently encode the value of a luminance-changing cue even when it lacked
predictive value [57], suggesting salience alone can modulate OFC activity. Since salient stimuli
often signal potential rewards or punishments [59], they may accelerate OFC value coding
[67,58] (Figure 2A). Consistent with this interpretation, rats’ ventral/lateral OFC neurons preferen-
tially encode salient stimuli, regardless of reward association [60]. The OFC may improve credit
assignment and facilitate learning in complex environments by amplifying salient inputs. However,
it remains unclear whether salience inputs to the OFC come primarily from sensory cortices or
other brain areas such as the mediodorsal thalamus and the inferior frontal gyrus [61,62].

Beyond bottom-up attentional capture mechanisms, sensory cortices also support sensory
working memory [63-65]. Sensory neurons can maintain stimulus representations after offset
through sustained activity, population coding, and oscillatory synchrony with the prefrontal cortex
[16,64-66]. The fidelity of these representations can even predict behavioural performance during
delayed discrimination tasks [67]. This function could be especially useful during credit assign-
ment, where the OFC must discriminate between multiple stimuli or their combinations. While
the hippocampus and PFC also provide working memory signals to the OFC [54], sensory cortex
inputs may deliver more precise, real-time information about recent stimuli (Figure 2A).

When faced with noisy or ambiguous input, the brain must evaluate competing interpretations
of the environment. A useful concept here is perceptual uncertainty, the inverse of how confi-
dently an agent can identify the true signal. Perceptual uncertainty aligns well with the Bayesian
perspective, in which probabilistic neural codes in sensory areas simultaneously encode the
estimated identity (mean) and uncertainty (variance) of a stimulus [68]. Information about stim-
ulus uncertainty and probability [69,70] could provide valuable information for downstream
computations in regions like the OFC. Indeed, higher visual cortices, such as the inferior tem-
poral cortex, have been shown to have enhanced connectivity with frontal cortices in trials

6 Trendsin Cognitive Sciences, Month 2025, Vol. xx, No. xx



Trends in Cognitive Sciences

with high perceptual uncertainty [70]. It is worth noting that the OFC itself is thought to track
perceptual uncertainty as a scalar signal [71]. The OFC might further integrate perceptual un-
certainty with other sources of uncertainty (e.g., reward probability [72]) to generate abstract
belief or confidence signals, guiding action selection [73]. Confidence signals may also intrinsi-
cally modulate value computations in the OFC (Figure 2A). Indeed, one of our laboratories
found that higher perceptual uncertainty corresponded to reduced value-related activity in
the mOFC/vmPFC [74]. Relayed to the OFC, these sensory signals could refine outcome pre-
dictions for perceptually similar stimuli.

How do sensory areas support task representations in the OFC?

While traditionally associated with value computations, a parallel research stream suggests
that IOFC [11] and mOFC/vmPFC [75] also represent abstract task states within a non-spatial
cognitive map (see [6,76]). Proposed by Tolman [77] and later supported by hippocampal
studies [78], the cognitive map concept has been expanded to encompass abstract task struc-
tures [79,80]. A key study [7] found that mOFC selectively encoded task-relevant observable
variables (in the current trial) and latent variables (relevant information in the previous trial) but
not task-irrelevant variables, indicating its role in representing the current task state [8]. This
abstract representation allows the OFC to guide behaviour via projections to the striatum,
ACC, and lateral PFC [79,81], supporting RL, generalisation, and continual learning.

We propose that sensory cortices are central to the OFC’s ability to efficiently construct task-state
representations — a process known as representation learning [76]. The OFC may compare
incoming sensory inputs with stored task states in the hippocampus and entorhinal cortex
[82,83]. If the input matches a known state, the OFC reuses and updates that memory; if not, it
generates a new state. Algorithmically, this could involve sequential comparisons (Figure 2B).
For instance, an agent currently in state ‘A’ might: (i) update their current state to ‘A4’ if the
input is similar; (i) switch to a known state ‘B’; or (iii) create a new state ‘C’. Sensory cortices
may additionally compress and relay features like salience, working memory content, and
perceptual uncertainty to support this process. Updated states can then be sent back to memory
systems and other prefrontal areas, continuously recalibrating the brain’s internal cognitive map
[11,82,83].

Our proposal aligns with models of hippocampal function that balance pattern separation and
generalisation [84], and echoes recent computational models of working memory that invoke
similar mechanisms [85]. We suggest that sensory cortices provide the OFC with precomputed,
compressed task knowledge (stimuli identity, uncertainty, past stimuli, salience) that support the
construction of task states [20,80,86]. While sensory cortices do not have access to the whole
set of associations as the OFC or hippocampus might have, they can still reduce the dimension-
ality of this sensory input in a useful manner, that is, they can ‘compress’ task knowledge. This
early-stage dimensionality reduction at the sensory level may facilitate representation learning in
the OFC. This idea also aligns with recent theories of compositionality, which propose
that both biological and artificial systems build complex representations by combining simpler,
reusable components [87].

Recent research suggests that the OFC additionally encodes broader cognitive maps — represen-
tations of the relationships between task elements or states [88,89]. These maps are well suited
for supporting model-based RL (Box 1) as they help predict how actions lead to state transitions.
Cognitive maps (or meta-maps) likely span the OFC, the hippocampus, the entorhinal cortex and
other prefrontal regions [48,82,83], though how this information is distributed across these re-
gions remains under investigation. Notably, hippocampal-to-OFC theta oscillations may transmit
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state information, with the OFC preferentially encoding state-dependent values rather than states
themselves [90]. Developing theoretical frameworks that reconcile OFC’s function in task-state
representation and state-dependent valuation will be essential moving forward.

OFC control signals to sensory areas support RL

Similar to bottom-up sensory to OFC projections, the function of top-down projections has been
studied across species in the context of RL [19,91]. Intriguingly, these top-down projections may
drive reward expectation [92], value-driven attentional capture [93], and coding remapping [19]
directly within sensory areas. In the following sections, we review the evidence supporting
these functions and discuss their implications for sensory processing during RL.

OFC control signals improve perceptual processing in sensory areas

Value signals can enhance perception [20,94], with high-reward stimuli often more accurately
discriminated than low-reward ones [95]. One mechanism may involve OFC-derived teaching
signals that adjust gain or receptive fields in sensory cortices based on reward history or expec-
tations [92] (Figure 3A). Rodent studies reveal modality-specific pathways for this effect. In vision,
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Figure 3. The orbitofrontal cortex (OFC)—sensory cortex interactions supporting reinforcement-based adaptive
learning. (A) Following a rewarding experience (e.g., an enjoyable coffee), the OFC can engage two complementary top-
down mechanisms. First, it sends a reward-expectation signal that enhances the encoding strength of sensory neurons
for stimuli associated with reward [99]. Second, the OFC issues a goal-directed attentional signal [93] that increases sensory
neuron responses to goal-relevant stimuli while filtering out irrelevant stimuli. Both mechanisms sharpen neuronal represen-
tations of relevant stimuli, resulting in enhanced perception and improved sensory acuity for task-relevant features. Other-
wise, when a stimulus’ value changes abruptly (e.g., the coffee becomes unpleasant), the OFC can send top-down
remapping signals to sensory cortices [19,91]. These signals dampen neural responses to the previously rewarding stimulus,
supporting rapid behavioural adaptations. (B) In our proposed model, sensory cortices send multiple information streams to
the OFC: sensory features help to construct OFC task states. Bottom-up attention directs the OFC to prioritise salient stimuli,
which may trigger updates to task state or goals. Sensory working memory enables discrimination between similar stimuli
(e.g., distinguishing task-relevant stimulus A from a recent but irrelevant stimulus B), improving outcome predictions.
These predictions in turn drive top-down reward expectation and value-remapping signals back to sensory cortices. Percep-
tual uncertainty reflects the reliability of stimulus representations and informs OFC confidence estimates that modulate its
outputs, enhancing signals under high certainty and decreasing signal strength when confidence is low. OFC remapping
signals enable rapid neural re-tuning during changes in task context.
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OFC projections to primary visual cortex (V1) somatostatin interneurons suppress responses to
unrewarded stimuli [96]; in audition and olfaction, projections to excitatory and inhibitory neurons
in primary auditory cortex (A1) and piriform cortex amplify responses to reward-associated stimuli
[97,98]. These findings suggest conserved mechanisms by which the OFC can modulate higher
visual (e.g., fusiform cortex [99]) and auditory regions (belt areas and superior temporal gyrus
[100]) to support perception via value-based feedback. Note that OFC-to-primary visual and au-
ditory cortex (A1, V1) projections appear unique to rodents. Complementary to reward expecta-
tion, value-driven attentional capture enhances perception across modalities: stimuli linked to
reward or punishment reliably draw attention in both visual and auditory domains [101,102]. This
is typically attributed to frontoparietal control networks, which modulate sensory cortices via
long-range projections [103]. However, the OFC may also directly influence sensory cortices,
strengthening task-relevant sensory representations via its own projections [93]. This mechanism
could act synergistically with frontoparietal and midbrain (e.g., VTA) inputs [104] to sharpen task-
relevant perception during RL (Figure 3A).

It is important to mention that the OFC connects with higher-order visual and auditory cortices,
but with both primary and higher cortices in other sensory modalities. This anatomical pattern
suggests that top-down OFC signals may selectively enhance perception at the level of what is
typically most relevant for behaviour, such as stimulus identity in vision (e.g., objects [99]) and
audition (e.g., speech [100]). While in other modalities, these signals may additionally modulate
feature-level discrimination. Since rodents exhibit direct projections from OFC to the primary
visual [96] and auditory cortices [97], there may be evolutionary divergence in the role and
granularity of OFC top-down control across species.

OFC signals can remap value encoding in sensory areas

OFC projections to sensory cortices can enact value remapping, that is, signal abrupt changes
in stimulus-outcome contingencies (Figure 3A) [19,91]. In one of our laboratories, we investigated
these top-down ‘teaching’ signals using fMRI during a probabilistic tactile reversal learning task
[21]. Following contingency reversal, we observed a transient increase in functional connectivity
between the IOFC and ipsilateral reward-selective regions of primary somatosensory cortex
(S1), which declined as participants adapted. Crucially, IOFC outcome-related activity preceded
S1 responses during the reversal phase, consistent with IOFC-driven reconfiguration of sensory-
reward representations to support flexible behaviour. Nevertheless, confirming the directionality
of these signals will require causal methods such as Granger causality, transcranial stimulation,
or neurofeedback-based approaches [105,106]. LOFC activity also decreases with learning exper-
tise, decreasing as participants move from naive to expert phases [19]. This mirrors findings that
PFC engagement decreases as performance becomes more efficient [107], possibly reflecting a
reduction in cognitive demands. One interpretation is that, during expert phases, reward-related
responses become stable and selective in sensory areas such as S1 [19], the auditory belt [108],
primary gustatory cortex [109], and the inferior temporal cortex [110] — allowing these areas to as-
sume greater value processing roles. This shift may offload computational burden from IOFC once
stimulus-action mappings are well established [19]. Lesion studies nonetheless offer a nuanced
picture: while OFC damage impairs reversal learning and increases lose-stay behaviour in probabi-
listic tasks [111], it has minimal effects in deterministic settings [112]. This suggests that OFC
switch signals may be particularly relevant in uncertain environments in primates.

Complementing correlational findings in humans and primates, rodent studies offer causal
evidence for OFC-driven value remapping in sensory cortices. In one study from one of our
laboratories, mice performed a tactile Go/No-Go reversal learning task [91]. Following reversal,
a fraction of value- and outcome-selective S1 neurons initially lost their selectivity but reacquired
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it with learning — unless IOFC=S1 projections were silenced, which abolished both neural
remapping and behavioural adaptation. Further analyses revealed that this top-down signal
also remapped S1 reward-expectation selectivity and resembled a context-prediction error
[113]. Such a signal is consistent with model-based and meta-RL frameworks (Box 1), as it
supports generalisation by updating stimulus-outcome expectations even for unobserved stimuli
following reversal [114,115].

Closing the loop through a holistic RL framework of OFC and sensory interactions
Most RL research treats bottom-up sensory inputs to OFC and top-down OFC projections to
sensory areas as separate processes. Mirroring this approach, we introduced their roles sepa-
rately. But this division overlooks their dynamic interaction. In reality, bottom-up inputs can
shape precise top-down signals, and vice versa. We now propose a closed-loop framework
that captures how synergy between these pathways can benefit RL.

In our framework, sensory inputs help build and update accurate task-state representations in
the OFC (Figure 3B), encoding all relevant variables, including predictions of prospective
outcomes. These internal OFC states then guide precise reward expectations and attentional sig-
nals, which, in turn, enhance perception of task-relevant features. Such a reciprocal loop reduces
perceptual uncertainty, sharpens neural representations, and supports adaptive behaviour by
continuously aligning sensory processing with task demands [56].

Reversal learning is a second key context to discuss the importance of reciprocal OFC-sensory
interactions in RL. After reversal, top-down OFC signals may remap outcome and expectation
responses in sensory cortices. These areas, in turn, may integrate sensory-reward signals with
higher-order cognitive information to deliver compressed, task-relevant inputs back to OFC for
task-state reconstruction and comparison. Additionally, sensory inputs conveying perceptual
uncertainty may modulate the strength of OFC feedback. In ambiguous contexts, lower decision
confidence [73] could weaken or diffuse OFC signals, resulting in less precise modulation of
sensory encoding that reflects uncertainty in credit assignment.

While several perspectives on OFC function in RL exist (Box 1), our framework emphasises the
OFC'’s role in constructing task-state representations within a broader ‘world model” or cognitive
map, concepts often linked to model-based and meta-RL. Our framework, however, does not
exclude other algorithmic implementations such as model-free RL, which we suspect may be
engaged differentially depending on task demands, behavioural strategies, or environmental
context, potentially shaping top-down teaching signals. Although our focus is on OFC-sensory in-
teractions in task-state representation, choice, and learning, we recognise the critical roles of other
regions — including the hippocampus, entorhinal cortex, midbrain, and mesolimbic system —in
supporting RL [53]. We thus position our proposal as one flexible component within a broader,
distributed neural architecture that supports RL.

Concluding remarks

The functional role of sensory cortices in cognition has undergone a profound shift. Once consid-
ered passive encoders of physical features — such as tonotopic [116], somatotopic maps [117], or
visual receptive fields [1 18] — they are now recognised as active contributors to higher-order func-
tions. This reappraisal carries important, yet underexplored, implications for how sensory projec-
tions influence executive regions, such as the OFC, during learning and decision-making.

We have highlighted how sensory cortices contribute to bottom-up attention [15], sensory work-
ing memory [16] and perceptual uncertainty [17], and how these signals, when projected to the
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Outstanding questions

Are the mechanisms underpinning
OFC teaching signals to sensory
areas distinct across task space and
task type? Are they conserved across
species, and what might that signify?

What function do value representations
in sensory areas play in value-guided
decision-making?

Is value an abstract state in RL? If so,
how can this be integrated into RL
models?

How are value and task-state repre-
sentations in OFC used to create
teaching signals that cause plasticity
changes in sensory areas?

Do unilateral and bilateral coupling
measures between OFC and sensory
cortices in human learning studies
generalise across sensory modalities?

Is the underlying mechanism of top-
down OFC teaching signals to sensory
cortices consistent across sensory
modalities?

What is the role of intrinsic value
signals, for example, derived from
affective computations?

What happens when value and
sensory-OFC loops converge on the
wrong dimension(s)?

Does silencing of salience, perceptual
uncertainty, or working memory
encoding neurons in sensory cortices
alter OFC task representations?
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OFC, can support value computations and representation learning. We also discussed how top-
down OFC signals may enhance the encoding of task-relevant and reward-associated stimuli in sen-
sory cortices, potentially improving perception and redistributing value computations from the OFC to
sensory areas. While some of these ideas are speculative, the role of value coding in sensory cortices
during RL is a promising direction for future research (see Outstanding questions). These insights ex-
tend beyond neuroscience (Box 1), suggesting that Al systems (which often neglect cognitive roles
for sensory units) may benefit from incorporating such dynamics. While some mechanisms — like
concept-specific units [119] — can arise in deep learning models, others, such as top-down mod-
ulation of sensory representations, are not easily captured by standard backpropagation. Whether
OFC-like tuning shifts can be modelled in artificial systems remains an exciting challenge.

In sum, we proposed a framework in which reciprocal OFC-sensory cortex interactions dynam-
ically support RL. Future work should test these bidirectional circuits through carefully designed
experiments (see Outstanding questions). Ultimately, we advocate moving beyond simple
‘A-to-B/B-to-A’ models towards an integrative, systems-level understanding (‘A and B’) of
the circuitry underlying value-guided behaviour.
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